
DigiMe Setup Workshop

Project co-funded by the European Regional Development Fund (ERDF)

DigiMe Setup Workshop

Handhabung von WiderständenZiel:

Inhalte:

Contents
◆ Brief introduction (review) of micro:bit and Makecode platform
◆ Getting familiar with the radio module (sending messages)
◆ Making -> coding and technology (electronics & sensors)

Handhabung von WiderständenZiel:Examples and opportunities for use in class
Handhabung von WiderständenZiel:Design of the micro:bit (pins, power supply, etc.)

Use of the micro:bit’s pins:
◆ Output (LEDs, servo, motor, LC display)
◆ Input (joystick, buttons)
◆ Sensors (light, movement, distance, etc.)

Basics of electronics (3 volts vs. 5 volts, motor drivers, pullups,

Use of and options for the radio module

Workshop Structure

Practical Part

Examples of possible projects

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Hot Wire – Setup 1
You probably know the skill game “hot wire”. We now want recreate
this game using the micro:bit, some electronics and handicraft.
Depending how good you are with coding, you can incorporate your
own features and/or extensions.

• 1 length of wire
• 2 cables with crocodile clamps
• 1 wooden board or plasticine
• 1 micro:bit
• insulating tape

Things needed

Now put the wire path into the holes you have just drilled. Then bend
approx. 10 mm on the two ends of the wire on the underside of the
wooden board and cut off the excess ends with a wire cutter.
Mount 2 narrow wooden strips on the underside of the wooden board
so that you can set down the game on the table.

Structure of the wire

Bend the wire with pliers to your liking. The
narrower the wire path, the more difficult it
will get to cover the entire distance without
any errors.

Draw the starting and end points of the wire path on the wooden
board and drill a hole with the diameter of the wire.

Tipp: If you make the distance between the holes 10 mm smaller, the wire
path will attach to the board better.

Alternatively, you can use 2 lumps of plasticine, in which you push the 2
ends of the wire path, instead of the wooden rack.

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Hot Wire – Setup 2

Structure of the wire loop

On the end of an approx. 15 cm long piece of wire, bend a loop with
a diameter of approx. 15 mm. The smaller the diameter, the more
difficult the game will be.
Then wrap the shaft with insulating tape, but leave the last 10 mm of
the shaft uninsulated.

Interconnecti

Use a crocodile clamp to connect one end of the wire path with the
negative pole (GND) of the micro:bit.
Then guide the other crocodile clamp cable from pin 0 of the
micro:bit to the uninsulated shaft of the wire loop.

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Hot Wire – Coding

Programming

Since your wire loop is connected to pin 0,
you need to query if a touch was detected.
If this is the case, the sad smiley is
displayed and then deleted again.

https://makecode.microbit.org/_a44akyhLFPyH

Error display by LED (optional)

In addition, you can have any error displayed by
an LED (light-emitting diode) lighting up.
For this, you only need a light diode in the colour
of your choice and a series resistor (the costs are
less than €1).

A so-called series resistor is needed to prevent the light-emitting
diode from getting destroyed. Despite its name, it does not matter
whether it is installed before or after the light-emitting diode in the
circuit. For “common” LEDs available on the market, you need a 47
ohm resistor in the colours black-purple-yellow for our 3 V power
source of the micro:bit.
For more details on the dimensioning of series resistors, see the worksheet on
“Ohm’s law”.

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

Note

http://makecode.microbit.org/_a44akyhLFPyH
http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Hot Wire – Buzzer

Buzzer extension

You can use a mini-buzzer for acoustic
signalling.
Using a crocodile clamp cable, connect the
negative pole (short pin) to the GND of the
micro:bit or the wire path (since it is already
connected to the GND).
Connect the positive pole of the buzzer (long pin)
to pin 1 of the micro:bit using another crocodile
clamp cable.

https://makecode.microbit.org/_LfhCLTHuXPY3

You can find the block in
the category. in the pane .

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

Tip

http://makecode.microbit.org/_LfhCLTHuXPY3
http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Game Buzzer – Setup

Who doesn’t know this situation? Several players are asked a question
and you have to decide who has answered it first.

This decision will from now on be made by a circuit you have
programmed yourself. A light will go on for the person who has
pushed the button first and all the other players can no longer push
their buttons until the game master releases the buttons again.

• Button
• 2 cables with crocodile clamps
• 1 micro:bit

Things needed

To allow wireless communication between all the players, you need to
use the radio module that is incorporated in the micro:bit.

Prerequisite:
The micro:bits that communicate with each
other need to share the same radio group (same
channel).

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Game Buzzer – Transmitter

Buzzer (transmitter

Wiring the buzzer (radio transmitter) is very easy.
One contact of the buzzer is connected to pin 0,
while the other contact is connected with the
negative pole (GND) of the micro:bit.

As long as the button is not pushed, 3 V (state 1) are applied to the
micro:bit.
Once the buzzer is pushed, pin 0 is connected with the negative pole
(GND) via the button and 0 V are applied.

In the coding part, the state of pin 0 is queried.
As soon as it is pushed, the text “Peter” is sent via radio. Send the name
of the respective player for each of the buzzers used.

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Game Buzzer – Receiver

Buzzer (receiver)

To be able to enter a name here,
you need this block from the
categories “Fortgeschritten”
[Advanced]
and .

When a text is received, it is automatically stored in the buffer
“receivedString” and can be queried just like any variable.

In order to be able to use the
variable “receivedString”, you
simply drag it from the block
“wenn Text empfangen” [if text
received].

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

Tip

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Game Buzzer – Advanced

Problem
While the radio receiver displays the name of the person who has
pushed the buzzer first, all other buzzer actuations are stored in a
buffer. The consequence of this would be that all other names would be
also shown one after another.

The additional variable “Freigabe” [Release] is used to prevent this.
Buzzer actuations are only used if the variable “Freigabe” is set to 1.

At program startup, the variable “Freigabe” is
set to 0, which means that pushing the buzzer
does not produce any effect.

When the Button B is clicked, the variable
“Freigabe” is set to 1, which means that the next
buzzer actuation can be used.

As long as the variable “Freigabe”
is 1, the received radio text is
interpreted.

Remember to set the variable “Release” to
0 again at the end of the process to
prevent buzzer actuations from being
used (only after renewed reset by the
Button B.

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

LCD Buzzer Display

We will expand the example above by using an LC
display that shows the name of the player whose
buzzer was pushed first to the game master.

A prerequisite for this is the implementation of the LCD on the
Makecode platform. You can do this by searching for “LCD” in the
category “Fortgeschritten” [Advanced] and “Erweiterungen” [Extensions].

From the proposed options, you select the
following LC display: i2cLCD1602.

The category is then available.

The most important blocks for use of the LC display:

In order for the display to be used, it
needs to be initialised using this
line.

You use this to turn on the backlight.

You use this line to indicate what is
to be shown on the display.

1. Zeichen
1. Zeile

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

LCD Buzzer Display – Coding

After initialisation of the display and
turning on the backlight, “Push Button B” is
shown in line 1.

When button B is pushed, the display
is cleared and you are ready for round
2.

After a pause of half a second, “to
start” is shown in line 2.

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

LCD Buzzer Display – Wiring

The wiring diagram on the right shows
how the wiring of the LC display on the
micro:bit should look like.

Connect SCL with pin 19 and SDA
with pin 20.

You need an external 5 C power source for the LC display to work
reliably. This can be a power bank, an external power supply or, as in
our case, an add-on board for the micro:bit, which also provides the
most important pins for pickup with a crocodile clamp in addition to a 5
V power source.

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

Important!

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

IR Distance Sensor – Theory

Theory

The Sharp infrared distance sensor emits an infrared ray on one side.

If the ray does not encounter an obstacle, it is not reflected and the
receiver on the other side does not receive any information.

If the IR ray is reflected by an obstacle, it will return to the receiver at a
specific angle (depending on the distance to the obstacle) and the
distance is calculated internally.

Objekt

Objekt

Reflexion

α β

The angle between the reflected ray and the receiver is
used for internal determination of the distance between the
object and the sensor.

Possible uses

▪ Parking assist system
▪ Robot
▪ Hand dryer

▪ Alarm system
▪ Toilet flush
▪ Door opener

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

IR Distance Sensor – Coding

You can connect the two power supply cables of the IR sensor directly with
the micro:bit. [red -> 3 V / black -> GND]
Connect the yellow cable with pin 0, 1, or 2.

Wiring

In the category , you will find the block
Depending on the distance, this value will be between 0 and 1023. The
higher the value, the shorter the distance to the obstacle.

.

For inch-perfect parking, it would be
helpful to have visual feedback on a
display.

For this, you simply need to query pin
0, to which the IR sensor is connected,
for its value.

The higher the value, the more bars
are displayed (smaller distance).

Parking assist system

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

You can use the comparative operator
from the category “Logik” [“Logic”] to check if a
specific value is exceeded and then execute the
corresponding commands.

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Servo - General

Inhalte:
Contrary to a conventional motor, a servo motor does
not rotate 360°, but assumes a specific position in the
range between 0° and 180°.

A conventional servo can only mechanically rotate in the
range between 0° and 180° because it is attached at
one end (exception: 360° continuous rotation servo).

Besides the power supply (brown - 0 V, red - 5 V), a
control line (yellow) is also available. The duration of
the pulse applied to this line determines the angle of
the servo. Every 20 ms (0.02 s), the servo expects a
pulse that determines the angle between 1 ms [0°] and
2 ms [180°].

Servo motors have many uses. They are used in industry and
mechanical engineering, but also by hobbyists:

Industry: Robot arm
Leisure: Scale modelling
Motor vehicles: Automatic seat adjustment
Sensors: Positioning of sensors

Servo motors are often used when high torques and exact, fast
movements are important.

A SG90 can be operated directly on the micro:bit with
reduced power. For several servos, the easiest option is to
use a servo board designed for this purpose or an external
power source.

Info

Functionality

Possible uses

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

20ms

Servo - Theory
Within a period duration of 20 ms, the pulse width of the control signal
indicates the angular position of the servo. In case of a pulse width of 1
ms, the servo is in the position 0° (leftmost) and, with the increase to 2 ms,
it moves to 180° (rightmost position). These values are for orientation only
and must be taken from the data sheet. The timing is the task of the
microcontroller (micro:bit) and is implemented in programming by means
of the so-called pulse width modulation.

20ms

20ms

20ms

20ms

1ms

1,25ms

1,5ms

1,75ms

2ms

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Servo - Wiring

• Wiring of the servo: route the leftmost terminal (control line) via the
green cable to pin 0 of the micro:bit.

• Use the central terminal to connect it via the red cable with the 3 V
pin.

• Finally connect the GND of the servo using the black cable with the
0 V pin of the micro:bit.

Info
In most cases, a servo will require more power than the micro:bit
can provide. If this is the case (servo does not move or “jitters”),
you need to provide the servo with its own power source.
Remember to connect the external mass (negative pole) with the
0 V pin of the micro:bit.

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Servo - Coding

A prerequisite for this is the implementation of the servo on
the Makecode platform. You can do this by clicking “Servo” in
the categories “Fortgeschritten” [Advanced] and
“Erweiterungen” [Extensions].

You will then have the category available.

Info
You can also test this function easily without
hardware with the online simulator on the
Makecode platform.

Test the function of the servo by assigning 3 angular positions to the
buttons.

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Servo – Brightness Display

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

In this example, we want to indicate the ambient brightness with a on
the servo.

To do this, you need the block and the block that you
use to indicate the servo angle.

If you want to output the luminous intensity as a servo angle, like in
the example above, the values will not match.

The value range of the servo is 0-180 (degrees), whereas the value
range of the brightness sensor is 0-255 in the simulator and 0-1023
in the micro:bit itself.

To map a numerical value from one range onto
another range, you can use the function “verteile”
[distribute] from the category “Mathematik”
[Mathematics].

Problem

In our case, the possible brightness values 0-255 of the simulator are
to be assigned to the possible servo values 0-180.

Current
brightness Brightness

min max
Servo angle

min max

The complete code looks like this.

If you use the “real” micro:bit instead of the online simulator, you need
to change the max. brightness value from 255 to 1023.

Solution

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Drawing with the Joystick – 1
Move the LED pixel on the micro:bit using the joystick. You can save
the current position of the pixel by pushing button A. Pushing button B
shows you the overall image of all stored pixels.
They can be icons, emojis, letters or simple images.

For this purpose you need the block. from the
category “LED”.

As in a co-ordinate system, x indicates columns and y indicates rows.
For programming languages, it is common usage to start the count at
0. Accordingly, the first row is row 0 and the last one is row 4.

Row 0
Row 1
Row 2
Row 3
Row 4

Since the lit pixel is to be “movable” using the joystick, it must not be
static, but dynamic, i.e. it needs to be indicated with variables.

If you want the pixel to
appear in the centre at
startup, you can achieve
this with the coordinates
x=2 and y=2.

The output on the display is the same –
from now on, however, the joystick can be
used to increase or decrease the LED value,
so that the LED pixel moves.

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

The following program block causes the LED pixel to wander to the
right as soon as the joystick is pushed to the right (pin 1; provided that
it has been wired accordingly).

Drawing with the Joystick – 2

Wiring:

A joystick is nothing else than 4 buttons that each close a circuit if
operated accordingly.
Since the micro:bit detects a voltage of 0 V as “pushed” on the
digital input, a cable with GND (0 V) is connected an the other one
with the respective pin of the micro:bit, e.g. pin 1. Just as the button
is actuated (e.g. joystick to the right), the circuit is closed and 0 V
are applied to pin 1, which is detected as an actuation of the button
by the micro:bit.

If joystick to the right…

…the pixel variable x is increased by 1
The range of the columns is from 0 to
4, i.e. when the value 5 is reached
(which cannot be displayed), it must be
reset to 0, causing the pixel to jump to
the first column.

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

To also display the pixel (currently only the corresponding variable has
been changed), the following block must be added.

Drawing with the Joystick – 3

The previous pixel is cleared

The current pixel is output

Since the already existing pixel is not cleared when the joystick is
pushed to the right, each actuation would result in another pixel being
added.
In order to clear the previous pixel in each case, the display must be
cleared before the current pixel is output.

As the micro:bit executes instructions very fast, even a short push of
the button would cause the pixel to be moved forward many positions.
There are 2 options to prevent this:

Option 1 (compromise):
If you include a pause of 100 ms (1/10th of a
second) after the output of the pixel, you have
enough time to release the button again.

If you push the button or joystick too long (for more than 100 ms), the
pixel will still continue to move. If you define a pause that is too long,
the pixel will no longer be able to move forward fast enough.

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

Note

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Drawing with the Joystick – 4
Option 2 (more elegant method):
After the button has been pushed -> an empty loop is used to wait
until the button (pin 1) is released again.

The program remains in this “waiting loop”
for as long as the button is being pushed.
As soon as the button is released, the
program code below is continued. This
means that it does not matter how long
you push the button – it is always
interpreted as a single actuation of the
button.

For the movement of the joystick to the left, you need to change the
following:

Overall pixel control with the joystick:
https://makecode.microbit.org/_0VxWRVh5rhLe

Connection of joystick to the
left to pin 0.

The pixel value is reduced by
1.

If the leftmost column (x=0)
is reduced by 1 (x=-1), it
must be set rightmost, to
x=4.

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://makecode.microbit.org/_0VxWRVh5rhLe
http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Advanced Button Actuation – Problem

Task:
At each startup, the display shows the number 0.
Each time button B is actuated, the output is to be increased by 1.

The default setting for the display output
is 0.6 seconds (600 ms).

Note
You can change the duration of the display by placing a comma after
the output value in JavaScript or Python and indicating the duration in
milliseconds (1 second = 1000 ms).

If the output duration is too short, the display will jump upwards two or
more times when the button is pushed once.
If the output duration is too long, you need to wait for a long time until
the next actuation of the button is detected, or it is not detected at all.

Problem

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Advanced Button Actuation – Solution

Solution to the problem:
An elegant solution would be to valuate the actuation of the button only
after it has been released again. In this case, it would be up to the user
for how short or long the button is actuated – it would only be detected

Implementation
After the button has been pushed, the system waits until the button is
released again. Only after that, the command is executed.

For a short push of the button to also be detected, reduce the
output duration on the display to approx. 10 ms.

This can be done using a loop:

The loop is repeated for as long as
the button is pushed. The program
is continued only after it is released.
Since nothing happens during
waiting, the “mache” [make] block
within the loop remains empty.

The output of multi-digit numbers would have to be adjusted by a
separate query to a longer output duration on the display to prevent the
output from becoming too fast.

https://makecode.microbit.org/_9bpi07HUJasw

https://makecode.microbit.org/_Fsr7p915mh7c

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

Note

http://makecode.microbit.org/_9bpi07HUJasw
http://makecode.microbit.org/_Fsr7p915mh7c
http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Differentiation – Short and Long Button

A single button is to be used to display the next number after pushing
the button for a short time. When the button is pushed longer, the
display is to be reset to 0.
This scenario can be found in hardware, for example, that does not have
sufficient space for several buttons, or you try to avoid an unintended
reset by requiring long actuation of the button.

Task description:

For this scenario you need a kind of “stopwatch”
that indicates whether the button has been
pushed long enough.
This task is assumed by a so-called timer. The
time will start automatically when the micro:bit is
supplied with power and counts upwards in
microseconds.

When the button is pushed, the
current runtime is saved in the
variable “Laufzeit” [stopwatch].

Wait until the button is released.

If the button was
pushed for more than
3 seconds, the number
is reset to 0.

https://makecode.microbit.org/_8MWLTCPR8fDx

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://makecode.microbit.org/_8MWLTCPR8fDx
http://creativecommons.org/licenses/by-nc-sa/3.0/at/

Improvement – Short and Long Button

In the above example, the display was only reset in case of longer
button actuation after the button was released. We now want this reset
to be shown as soon as the time has elapsed.

https://makecode.microbit.org/_autMpUT7gJE7

This loop not only queries if the button
is released, but also if it was pushed for
more than 3 seconds.
If this is the case, the display is reset to
0.

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://makecode.microbit.org/_autMpUT7gJE7
http://creativecommons.org/licenses/by-nc-sa/3.0/at/

micro:bit – Pin Assignment

Bild: https://tech.microbit.org/hardware/schematic

The worksheet and illustrations by Claus Zöchling are licensed under the Creative Commons Lizenz CC BY-NC-SA 3.0 AT

http://creativecommons.org/licenses/by-nc-sa/3.0/at/

